Problem #149
Fibonacci Sum
Define: F(0)=0
F(1)=1
F(n)=F(n-1) + F(n-2) , n>=2
Define S(N,K) = \sum_{n=0}^{N} F(1+n*K) mod 1000000009
Given S(10^{12},100) = 878943097
Enter the value of S(221^{221^{10^{18}}},55^{55^{10^{18}}})
Define: F(0)=0
F(1)=1
F(n)=F(n-1) + F(n-2) , n>=2
Define S(N,K) = \sum_{n=0}^{N} F(1+n*K) mod 1000000009
Given S(10^{12},100) = 878943097
Enter the value of S(221^{221^{10^{18}}},55^{55^{10^{18}}})