Problem #132
Functions
For a complex number z, given a function f(z)=\sum_{i=1}^{n}\frac{1}{i^{z}} .
Let p_{j} be the j-th prime number g(z) = \prod_{j=1}^{m}(1-p_{j}^{-z})
Let x = \lim_{n, m\rightarrow \infty} f(z)*g(z)
Find the value of \sum_{i=1, gcd(i, k) = x}^{i=k}1 ,where k = 354216846978542365.