Problem #128
Fibonacci Fun
Given:
a_1 * (e^{x_1}) + a_2 * (e^{x_2}) + … + a_{30} * (e^{x_{30}}) = 321123
where a_i = ith fibonacci number, e is the Euler’s number and x_i is a real variable (i.e. a_1 = 1, a_2 = 1, a_3 = 2 ..)
Let minimum value of: e^{2 x_1} + e^{2 x_2} + … + e^{2 x_{30}} be Z at x_i = y_i where all x_i satisfy the above condition.
Let k = (y_1 + y_2 + y_3 + ... + y_{30})^4/Z
Find the greatest integer \le 100k